Вітамін D і автоімунні захворювання щитоподібної залози (частина 1)
DOI:
https://doi.org/10.30978/UJPE2021-3-6Ключові слова:
вітамін D, автоімунний тиреоїдит, хвороба Грейвса, Т-лімфоцити, В-лімфоцити, цитокіниАнотація
Автоімунний тиреоїдит і хвороба Грейвса є поширеними автоімунними захворюваннями. За оцінками, трапляються у 5 % осіб у загальній популяції. Нині вивчають можливість застосування патогенетичних способів лікування автоімунної патології з використанням селективних імуносупресивних агентів. Великий інтерес становить вітамін D, відомий протизапальними та імунорегуляторними властивостями. Перша частина статті присвячена ролі імунних клітин у патогенезі автоімунних захворювань щитоподібної залози, що необхідно для розкриття механізмів терапевтичної дії кальцитріолу при цій групі патології. Традиційно автоімунний тиреоїдит розглядали як ураження щитоподібної залози, опосередковане Т-хелперами 1 типу (Th1), а хворобу Грейвса — як захворювання з переважанням автоімунної відповіді, керованої Т-хелперами 2 типу (Th2). В основі цієї помилки лежало уявлення про те, що гуморальним імунітетом керують цитокіни Th2, а клітинним імунітетом — Th1. Протягом останніх десятиліть вивчають значення в патогенезі автоімунних тиреоїдних захворювань нових субпопуляцій імунних клітин. Установлено, що Т-хелпери 17 типу (Th17) відіграють важливу роль у розвитку запальних і автоімунних хвороб, які раніше класифікували як Th1-залежні патології. Особливий інтерес також становить участь в автоімунному процесі Т- і В-регуляторних лімфоцитів. Установлено, що у пацієнтів з тиреоїдною патологією ці клітини накопичуються в запаленій тканині щитоподібної залози, однак не здатні ефективно супресувати імунну відповідь. Подальші дослідження допоможуть з’ясувати, які імунні клітини можуть стати мішенню для агоністів вітаміну D при комплексному лікуванні автоімунних захворювань.
Посилання
Li Q. et al. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes - Cytokines circuits beyond the Th1−Th2 paradigm. J Cell Physiol. 2019;234(3):2204-2216. https://doi.org/10.1002/jcp.27180.
Wiersinga WM. Advances in treatment of active, moderate-to-severe Graves’ ophthalmopathy. Lancet Diabetes Endocrinol. 2017;2:134-142. https://doi.org/10.1016/S2213-8587(16)30046-8.
Huang Y. et al. Progress in the pathogenesis of thyroid-associated ophthalmopathy and new drug development. Taiwan J Ophthalmol. 2020;3:174–180. https://doi.org/HYPERLINK «https://dx.doi.org/10.4103%2Ftjo.tjo_18_20»10.4103/tjo.tjo_18_20.
Dankers W. et al. Vitamin D in autoimmunity: molecular mechanisms and therapeutic potential. Front Immunol. 2017;7:697. «https://doi.org/10.3389/fimmu.2016.00697»2016.00697.
Infante M. et al. Influence of vitamin D on islet autoimmunity and beta-cell function in type 1 diabetes. Nutrients. 2019;11(9):2185. https://doi.org/10.3390/nu11092185.
Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. 2020;12(7):8413. https://doi.org/10.3390/nu12072097.
Mansournia N. et al. The association between serum 25OHD levels and hypothyroid Hashimoto’s thyroiditis. J Endocrinol Investig. 2014;37:473–476. https://doi.org/10.1007/s40618-014-0064-y.
Maciejewski A et al. Assessment of vitamin D level in autoimmune thyroiditis patients and a control group in the polish population. Adv Clin Exp Med. 2015;24:801-806. https://doi.org/10.17219/acem/29183.
Kim D. Low vitamin D status is associated with hypothyroid Hashimoto’s thyroiditis. Hormones. 2016;15(3):385-393. https://doi.org/10.14310/horm.2002.1681.
Giovinazzo S. et al. Vitamin D receptor gene polymorphisms/haplotypes and serum 25(OH)D3 levels in Hashimoto’s thyroiditis. Endocrine. 2017;55(3):599-606. https://doi.org/10.1007/s12020-016-0942-5.
Metwalley KA. Vitamin D status in children and adolescents with autoimmune thyroiditis. J Endocrinol Invest. 2016;39(7):793-797. https://doi.org/10.1007/s40618-016-0432-x.
Sönmezgöz Е. et al. Hypovitaminosis D in children with Hashimoto’s thyroiditis. Rev Med Chil. 2016;144(5):611–616. https://doi.org/10.4067/S0034-98872016000500009.
Evliyaoğlu О. et al. Vitamin D deficiency and Hashimoto’s thyroiditis in children and adolescents: a critical vitamin D level for this association? J Clin Res Pediatr. Endocrinol. 2015;7(2):128–133. https://doi.org/HYPERLINK «https://dx.doi.org/10.4274%2Fjcrpe.2011»10.4274/jcrpe.2011.
Planck T. et al. Vitamin D in Graves’ disease: levels, correlation with laboratory and clinical parameters, and genetics. Eur Thyroid J. 2018;7(1):27–33. https://doi.org/10.1159/000484521.
Mangaraj S. et al. Evaluation of vitamin D status and its impact on thyroid related parameters in new onset Graves’ disease- A cross-sectional observational study. Indian J Endocrinol. Metab. 2019;23(1):35–39. https://doi.org/10.4103/ijem.IJEM_183_18.
Xu MY et al. Vitamin D and Graves’ disease: A meta-analysis update. Nutrients. 2015;7(5):3813–3827. https://doi.org/10.3390/nu7053813.
Unal AD. et al. Vitamin D deficiency is related to thyroid antibodies in autoimmune thyroiditis. Cent Eur J Immunol. 2014;39(4):493–497. https://doi.org/10.5114/ceji.2014.47735.
Shin DY. et al. Low serum vitamin D is associated with anti-thyroid peroxidase antibody in autoimmune thyroiditis. Yonsei Med J. 2014;55(2):476–481. https://doi.org/10.3349/ymj.2014.55.2.476.
Wang X. et al. Low serum vitamin D is associated with anti-thyroid-globulin antibody in female individuals. Int J Endocrinol. 2015:285290. https://doi.org/10.1155/2015/285290.
ElRawi HA. et al. Study of vitamin D level and vitamin d receptor polymorphism in hypothyroid Egyptian patients. J Thyroid Res. 2019:3583250. https://doi.org/10.1155/2019/3583250.
Çamurdan OM. et al. Vitamin D status in children with Hashimoto thyroiditis. J Pediatr Endocrinol Metab. 2012;25(5-6):467–470. https://doi.org/10.1515/jpem-2012-0021.
Dizdar OS. et al. Effects of Vitamin D treatment on thyroid autoimmunity. J Res Med Sci. 2016;21:85. https://doi.org/10.4103/1735-1995.192501.
Chaudhary S. et al. Vitamin D supplementation reduces thyroid peroxidase antibody levels in patients with autoimmune thyroid disease: An open-labeled randomized controlled trial. Indian J Endocrinol Metab. 2016;20(3):391-398. https://doi.org/10.4103/2230-8210.179997.
Krysiak R. et al. The effect of vitamin D on thyroid autoimmunity in levothyroxine-treated women with Hashimoto’s thyroiditis and normal vitamin D status. Exp Clin Endocrinol Diabetes. 2017;125(4):229‒233. https://doi.org/10.1055/s-0042-123038.
Krysiak R. et al. Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto’s thyroiditis and low vitamin D status. Pharmacol Rep. 2018;71(2):367–373. https://doi.org/10.1016/j.pharep.2018.12.006.
Fabbri A. et al. Editorial – Vitamin D status: a key modulator of innate immunity and natural defense from acute viral respiratory infections. Eur Rev Med Pharmacol Sci. 2020;24(7):4048-4052. https://doi.org/10.26355/eurrev_202004_20876.
Ramos-Leví AM, Marazuela M. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms . Еndocrinol Nutr. 2016;63(8):421-429. https://doi.org/10.1016/j.endonu.2016.04.003.
Stadhouders R. et al. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun. 2018;87:1-15. https://doi.org/10.1016/j.jaut.2017.12.007.
Kristensen В. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls. Dan Med J. 2016;63(2):B5177.
Bogner U. et al. Antibody-dependent cell mediated cytotoxicity against human thyroid cells in Hashimoto’s thyroiditis but not Graves’ disease. J Clin Endocrinol Metab. 1984;59(4):734–738. https://doi.org/10.1210/jcem-59-4-734.
Guo J. et al. Recombinant thyroid peroxidase-specific fab converted to immunoglobulin G (IgG) molecules : evidence for thyroid cell damage by IgG1, but not IgG4, autoantibodies. J Clin Endocrinol Metab. 1997;82(3):925–931. https://doi.org/HYPERLINK «https://doi.org/10.1210/jcem.82.3.3831»10.1210/jcem.82.3.3831.
Siebenkotten G, Radbruch A. Towards a molecular understanding of immunoglobulin class switching. Immunologist. 1995;3:141-145. https://doi.org/10.1146/annurev.iy.08.040190.003441.
Aalberse RC. et al. Serologic aspects of IgG4 antibodies. I. Prolonged immunization results in an IgG4-restricted response. J Immunol. 1983;130(2):722-726.
McLachlan SM, Rapoport B. Thyroid peroxidase as an autoantigen. Thyroid. 2007;17(10):939-948. https://doi.org/10.1089/thy.2007.0169.
Weetman AP. et al. Thyroid-stimulating antibody activity between different immunoglobulin G subclasses. J Clin Invest. 1990;86(3):723-727. https://doi.org/10.1172/JCI114768.
Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology. 1970;18(5):723-737.
Sakaguchi S. et al. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–1164.
Hori S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–1061. https://doi.org/10.1126/science.1079490.
Grant CR. et al. Regulatory T-cells in autoimmune diseases: Challenges, controversies and –yet – unanswered questions. Autoimmunity Reviews. 2015;14(2):105–116. https://doi.org/10.1016/j.autrev.2014.10.012.
Gasteiger G, Kastenmuller W. Foxp3+ regulatory T-cells and IL-2: The Moirai of T-cell fates? Front Immunol. 2012;3:179. «https://dx.doi.org/10.3389%2Ffimmu.2012.00179». 2012.00179.
Plitas G. et al. Regulatory T cells: differentiation and function. Cancer Immunol. Res. 2016;4(9):721–725. https://doi.org/HYPERLINK «https://dx.doi.org/10.1158%2F2326-6066.CIR-16-0193»10.1158/2326-6066.CIR-16-0193.
Groux H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. – 1997;389(6652: 737-774. https://doi.org/HYPERLINK «https://doi.org/10.1038/39614»10.1038/39614.
Roncarolo M. G. et al. Autoreactive T cell clones specific for class I and class II HLA antigens isolated from a human chimera. J. Exp. Med. – 1988. – Vol. 167(5:1523-1534. https://doi.org/HYPERLINK «https://dx.doi.org/10.1084%2Fjem.167.5.1523»10.1084/jem.167.5.1523.
Gagliani N. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1. Nat. Med. 2013;19(6):739–746. https://doi.org/10.1038/nm.3179.
Roncarolo M. et al. The biology of T regulatory Type 1 cells and their therapeutic application in immune-mediated diseases. Immunity. 2018;49(6):1004–1019. https://doi.org/ 10.1016/j.immuni.2018.12.001.
Jørgensen N. et al. The tolerogenic function of regulatory T cells in pregnancy and cancer. Front Immunol. 2019;10:911. https://doi.org/HYPERLINK «https://dx.doi.org/10.3389%2Ffimmu.2019.00911»10.3389/fimmu.2019.00911.
Rodríguez-Muñoz A. et al. Levels of regulatory T cells CD69+NKG2D+IL-10+ are increased in patients with autoimmune thyroid disorders. Endocrine. 2015;51(3):478–489. https://doi.org/10.1007/s12020-015-0662-2.
Marazuela M. et al. Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab. 2006;91(9):3639–3646. https://doi.org/10.1210/jc.2005-2337.
Vitales-Noyola M. et al. Patients with autoimmune thyroiditis show diminished levels and defective suppressive function of Tr1 regulatory lymphocytes. J Clin Endocrinol Metab. 2018;103(9):3359–3367. https://doi.org/10.1210/jc.2018-00498.
Bossowski A. et al. Decreased proportions of CD4 + IL17+/CD4 + CD25 + CD127- and CD4 + IL17+/CD4 + CD25 + CD127 - FoxP3+ T cells in children with autoimmune thyroid diseases. Autoimmunity. 2016;49(5):320–328. «https://doi.org/10.1080/08916934.2016.1183654».
Pandiyan P, Zhu J. Origin and functions of pro-inflammatory cytokine producing Foxp3(+) regulatory T cells. Cytokine. 2015;76(1):13–24. https://doi.org/10.1016/j.cyto.2015.07.005.
Rydzewska M. et al. Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid diseases. Thyroid. Research. 2018;11:2. https://doi.org/10.1186/s13044-018-0046-9.
Figueroa-Vega N. et al. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2010;95(2):953–962. «https://doi.org/»/10.1210/jc.2009-1719.
Aggarwal S. et al. Interleukin-23 promotes a distinct Cd4 Tcell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278(3):1910-1914. https://doi.org/10.1074/jbc.M207577200.
Okada S. et al. Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;6248(349):606-613. https://doi.org/HYPERLINK «https://doi.org/10.1126/science.aaa4282»10.1126/science.aaa4282.
Zhou L. et al. 1,25-Dihydroxyvitamin D3 ameliorates collagen-induced arthritis via suppression of Th17 cells through miR-124 mediated inhibition of IL-6 signaling. L. Front Immunol. 2019;10:178. https://doi.org/10.3389/fimmu.2019.00178.
Yahia-Cherbal H. et al. NFAT primes the human RORC locus for RORγt expression in CD4 + T cells. Nat Commun. 2019;10(1):4698. https://doi.org/10.1038/s41467-019-12680-x.
Capone A, Volpe E. Transcriptional regulators of T Helper 17 cell differentiation in health and autoimmune diseases. Front. Immunol. 2020;11:348. https://doi.org/HYPERLINK «https://dx.doi.org/10.3389%2Ffimmu.2020.00348»10.3389/fimmu.2020.00348.
Hamburg JP, Tas SW. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun. 2018;87:69–81. https://doi.10.1016/j.jaut.2017.12.006.
Qin Q. et al. The increased but non-predominant expression of Th17- and Th1-specific cytokines in Hashimoto´s thyroiditis but not in Graves´ disease. Braz J Med Biol Res. 2012;145(12):1202–1208. https://doi.org/ 10.1590/S0100-879X2012007500168.
Peng D. et al. A high frequency of circulating Th22 and Th17 cells in patients with new onset Graves’ disease. PLoS One. 2013;8(7):e68446. https://doi.org/10.1371/journal.pone.0068446.
Li D. et al. Th17 plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin Immunol. 2013;149(3):411-420. https://doi.org/10.1016/j.clim.2013.10.001.
Xue H. et al. The possible role of CD4⁺CD25(high)Foxp3⁺/CD4⁺IL-17A⁺ cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Endocrine. 2015;50(3):665-673. https://doi.org/10.1007/s12020-015-0569-y.
Vitales-Noyola M. et al. Pathogenic Th17 and Th22 cells are increased in patients with autoimmune thyroid disorders. Endocrine. 2017;57(3):409. – Art. 417. https://doi.org/10.1007/s12020-017-1361-y.
Li J.-R. et al. Functional interleukin-17 receptor A are present in the thyroid gland in intractable Graves. Cell Immunol. 2013;281(1):85-90. https://doi.org/10.1016/j.cellimm.2013.02.002.
Wang S. et al. T cell-derived leptin contributes to increased frequency of T helper type 17 cells in female patients with Hashimoto’s thyroiditis. Clin Exp Immunol. 2013;171(1):63–68. https://doi.org/HYPERLINK «https://dx.doi.org/10.1111%2Fj.1365-2249.2012.04670.x»10.1111/j.1365-2249.2012.04670.x.
Fröhlich E, HYPERLINK «%20//%20Wahl»Wahl R. Thyroid autoimmunity: role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front Immunol. 2017;8:521. https://doi.org/HYPERLINK «https://dx.doi.org/10.3389%2Ffimmu.2017.00521»10.3389/fimmu.2017.00521.
Maravillas-Montero JL, Acevedo-Ochoa E. Human B regulatory cells: the new players in autoimmune disease. Rev Invest Clin. 2017;69(5):243-246. https://doi.org/10.24875/ric.17002266.
Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity. 2015;42(4):607-612. https://doi.org/10.1016/j.immuni.2015.04.005.
Bossowski A. et al. Analysis of B regulatory cells with phenotype CD19+CD24hiCD27+IL-10+ and CD19+IL-10+ in the peripheral blood of children with Graves’ disease and Hashimoto’s thyroiditis. Pediatr Endocrinol. 2015;10(1):40. https://doi.org/10.18544/EP-02.14.01.1552.
Qin J. et al. Increased circulating Th17 but decreased CD4 + Foxp3 + Treg and CD19 + CD1d hi CD5 + Breg subsets in new-onset Graves’ disease. Biomed Res Int. 2017:8431838. https://doi.org/10.1155/2017/8431838.
Kristensen B. et al. Characterization of regulatory B cells in Graves’ disease and Hashimoto’s thyroiditis. PLoS One. 2015;10(5):e0127949. https://doi.org/10.1371/journal.pone.0127949.